ON THE SYMBOLIC CALCULUS OF BERNOULLI CONVOLUTIONS

BY R. KAUFMAN

ABSTRACT

A probability measure on T whose symbolic calculus is minimal is constucted.

Introduction. Let μ be a probability measure on the circle group T (or the real numbers modulo 1), and let $\hat{\mu}$ be its Fourier-Stielties transform:

$$
\hat{\mu}(n) = \int_0^{2\pi} e(-nt)\mu(dt), \quad n = 0 \pm 1, \pm 2, \cdots,
$$

where $e(x) \equiv e^{2\pi ix}$.

If $-1 \le \beta \le 1$, then a function F, continuous in $[-1, 1]$ is said to operate on μ if the composite function $F \circ \hat{\mu}$ is a Fourier-Stieltjes transform of a finite measure on T (not in general a probability). In that case we define $F(\mu)$ by the prescription $F(\hat{\mu})=F \circ \hat{\mu}$. The probability μ is called a *Bernoulli convolution* if $\hat{\mu}$ is expressed as a product

(1)
$$
\hat{\mu}(n) = \prod_{k=1}^{\infty} \cos(2\pi a_k n)
$$

where each $a_k \geq 0$, $\sum a_k^2 < \infty$. k=l

THEOREM. For a certain Bernoulli convolution μ_0 , every function F that *operates on* μ_0 *is a power series*

$$
F(x) \equiv \sum_{m=0}^{\infty} b_m x^m, \sum_{m=0}^{\infty} |b_m| < \infty.
$$

This theorem is related to work of Herz [2], and also to work of Helson, Kahane, Katznelson, and Rudin [1], Varopoulos [5], and the author [4].

Received July 27, 1967, and in revised form October 27, 1967.

Vol. 6, 1968 THE CALCULUS OF BERNOULLI CONVOLUTIONS 31

The proof is contained in three paragraphs: the first develops some elementary facts about the internal structure of the family of Bernoulli convolutions; the next contains some Fourier analysis of functions derived from F ; and the third is an application of a measure-representation method of Hewitt and Savage [3]. In regard to [3] some references to the necessary facts are given, but it was inexpedient to reproduce the formidable notation.

I. LEMMA. *There exists a Bernoulli convolution* μ_0 with this property: *For any Bernoulli convolution It there is a sequence of positive integers* ${A_N}_{N=1}^{\infty}$ such that

$$
\lim_{N\to\infty}\hat{\mu}_0(A_N n)=\hat{\mu}(n),\qquad n=0,\,\pm 1,\,\pm 2,\cdots.
$$

Proof. In the formula (1), it is plainly enough to consider all finite products in which the numbers a_k are rational; let $\{\mu_N\}_{N=1}^{\infty}$ be an enumeration of these. We momentarily apply formula (1) to *real* values of n, and write

$$
\hat{\mu}_0(n) = \prod_{N=1}^{\infty} \hat{\mu}_N(nA_N^{-1}).
$$

Here A_1, A_2, \dots are integers chosen inductively to meet two requirements:

(i) For
$$
1 \leq j < N
$$
, and all integers *n*, $\hat{\mu}_j(nA_NA_j^{-1}) = 1$.

This is plainly possible as all the coefficients involved are rational numbers.

(ii) For
$$
1 \leq j < N
$$
, $-\infty < u < \infty$,

$$
\left|\hat{\mu}_j(uA_jA_N^{-1})-1\right|\leq |u|N^{-2}.
$$

This is easily attained from the inequality $|1 - \cos y| \le |y|$, $-\infty < y < \infty$. Then $|\hat{\mu}_0(nA_N)-\hat{\mu}_N(n)| \leq |n| \sum_{i=N} j^{-2}$, and in the statement of the lemma we can choose an appropriate subsequence of the A_N 's. Observe that by making the integers A_N increase very rapidly, we can make the support of μ_0 arbitrarily "thin" in terms of Hausdorff dimension.

COROLLARY. If F operates on μ_0 then F operates on every Bernoulli convolution μ and $\|F(\mu)\| \leq \|F(\mu_0)\|$.

This is a consequence of Helly's theorem, the continuity of F , and the lemma.

II. We recall that for a continuous function h on the N-torus T^N , the $A(T^N)$ norm is the sum of the moduli of the Fourier coefficients of h :

$$
h \sim (m_1, \cdots, m_N) = \int_0^1 \cdots \int_0^1 e(-m_1x_1 -, \cdots, -m_Nx_N)h(x)dx.
$$

For each $N \geq 1$, define

(2)
$$
H(x_1, ..., x_N) = F(\cos(2\pi x_1), ..., \cos(2\pi x_N)).
$$

LEMMA. *If F operates on* μ_0 then for every $N \geq 1$, $\|H\|_{A(T^N)} \leq \|F(\mu_0)\|$.

Proof. Let N be fixed, let $p_1 < p_2 < \cdots < p_N$ be odd primes, and let

$$
\hat{\mu}(n) = \prod_{k=1}^N \cos(2\pi n p_k^{-1}).
$$

By the corollary of I we know that $||F(\mu)|| \le ||F(\mu_0)||$, and we shall now prove that as $p_1 \to \infty, \dots, p_N \to \infty$, the norm of $F(\mu)$ converges to $\|H\|_{\mathcal{A}(T^N)}$.

The measure $F(\mu)$ is supported by the p-th roots of 1, $p = p_1 p_2 \cdots p_N$. Each of these roots can be represented modulo 1 in the form

(3)
$$
w = s_1 \bar{p_1}^1 + \dots + s_N \bar{p_N}^{-1}
$$

where $\frac{1}{2}(1 - p_k) < s_k \leq \frac{1}{2}(1 + p_k)$, $1 \leq k \leq N$. Different choices of (s_1, \dots, s_N) yield distinct p-th roots, and each N-tuple (s_1, \dots, s_N) is actually encountered for large enough primes.

The point-value of $F(\mu)$ at the element w in (3) is

$$
p^{-1}\sum_{0\leq t_{\kappa}\leq p_{\kappa}}e\left(\sum s_{k}t_{k}p_{k}^{-1}\right)F\left[\prod_{k=1}^{N}\cos(2\pi t\ p_{k}^{-1})\right].
$$

For fixed $(s_1, ..., s_N)$ the limit as $p_1 \to \infty, ..., p_N \to \infty$, is exactly $\hat{H}(s_1 \cdots s_N)$. But, as explained before, any finite number of these eventually occur separately and simultaneously, so indeed

$$
\|H\|_{A(T^N)} \leq \sup \|F(\mu)\| = \|F(\mu_0)\|.
$$

III. LEMMA. *If the A(T^N) norms of H are bounded by B for all N* \geq 1 (*H* being *defined by* (2)) *then*

$$
F(x) = \sum_{m=0}^{\infty} b_m x^m, \sum_{m=0}^{\infty} |b_m| \leq B.
$$

The proof of this depends on [3], in particular the main theoorem on p. 483, but some preparation is necessary. First we allow the number of dimensions, N to increase indefinitely, obtaining in the limit a "Fourier expansion" of H as a function of an infinite sequence of co-ordinates. Then we use [3] to represent that expansion as an integral over the elementary, or extreme, measures in a certain compact set of measures. Finally we show that this representation is concentrated on a subset of the extreme measures that corresponds exactly to the functions $1, x, x^2, \cdots$.

(a) Let Z be the set of integers, let $Y = Z \cup \{\phi\}$ be the one-point compactification of Z, and let Z^{∞} (resp. Y^{∞}) be the infinite product of Z (resp. Y) with itself. There is a Baire measure λ on Z^{∞} , such that $||\lambda|| \leq B$ and

(4)
$$
\lambda \{ z \in \mathbb{Z}^{\infty} : z_1 = s_1, \cdots, z_N = s_N \} = \hat{H}(s_1, \cdots s_N)
$$

for any integers $s_1, \dots s_N$, $(1 \leq N < \infty)$. To verify this, we observe first that

$$
\hat{H}(s_1,\dots,s_N) \equiv \sum_{m=-\infty}^{\infty} \hat{H}(s_1,\dots,s_N,m)
$$

so that all the conditions under (4) are mutually consistent. The hypothesis of the lemma then guarantees that the variation of λ is $\leq B$. It is perhaps clearer if the measure λ is allowed *a priori* to be supported by the compact space Y^{∞} , since it follows from (4) that Z^{∞} must have full λ -measure.

(b) The measure λ on $Z^{\infty} \subseteq Y^{\infty}$ is symmetric [2, p. 472], that is, invariant under finite permutations of the co-ordinates. Then λ is a combination of four symmetric positive measures. To see this, let $\lambda = \lambda_1 + i\lambda_2$ with λ_2 and λ_2 real. Let $\lambda_1 = \lambda_1^+ - \lambda_1^-$ be a Hahn decomposition of λ_1 and S any finite permutation of the co-ordinates. Then

$$
\lambda_1 = \lambda_1 \circ S^{-1} = \lambda_1^+ \circ S^{-1} - \lambda_1^- \circ S^{-1}
$$

whence $\lambda_1^+ \circ S^{-1} \geq \lambda_1^+$ and finally $\lambda_1^+ = \lambda_1^+ \circ S^{-1}$. We are now in a position to apply the representation theorem.

(c) Let K be the compact metric space of probability measures in Y^{∞} , and for each element σ of K, let σ^* be the infinite product of σ with itself so that σ^* is defined in Y^{∞} . Then there is a Baire measure Φ in K such that

$$
\langle \lambda, f \rangle = \int_{\sigma \epsilon K} \langle \sigma^*, f \rangle \Phi(d\sigma)
$$

for each continuous function f on Y^{∞} . Symbolically

$$
\lambda = \int_K \sigma^* \Phi(d\sigma).
$$

If K is a disjoint union $K_1 \cup K_2$, then the measures

$$
\int_{K_1} \sigma^* \Phi(d\sigma) \text{ and } \int_{K_2} \sigma^* \Phi(d\sigma)
$$

are mutually singular [3, pp. 487-489]. This proves at once that $\|\Phi\| \leq B$ and that Φ is uniquely determined.

In the formula for $\langle \lambda, f \rangle$ we can pass to bounded Baire functions on Y^{∞} . In particular, suppose

$$
||f|| \leq 1, \quad \langle \lambda, f \rangle = ||\lambda||, \quad \lambda = 0 \text{ on } Y^{\infty} \sim Z^{\infty}.
$$

Then $|\langle f, \sigma^* \rangle| = 1$ almost everywhere $d\Phi$, and Φ is concentrated on the subset K_0 of K consisting of measures on Z.

(d) Suppose that x_1, \dots, x_N are fixed real numbers and set

$$
f(z) = e(z_1x_1 + \cdots + z_nx_n), \ z = (z_1, \cdots, z_n, \cdots).
$$

Then $\langle f, \sigma^* \rangle = \hat{\sigma}(x_1) \cdots \hat{\sigma}(x_N)$ where $\sigma \equiv \hat{\sigma}$ is the usual Fourier transformation defined

$$
\hat{\sigma}(x) = \sum_{m=-\infty}^{\infty} \sigma(\{m\}) e(mx).
$$

Hence

$$
H(x_1,\dots,x_N)=\int_{K_0} \hat{\sigma}(x_1)\cdots\hat{\sigma}(x_N)\Phi(d\sigma).
$$

Let a_1 b_1 , a_2 , b_2 be real numbers for which

(5)
$$
\cos(2\pi a_1)\cos(2\pi b_1) = \cos(2\pi a_2)\cos(2\pi b_2).
$$

Then $H(a_1, b_1, x_3, \dots, x_N) \equiv H(a_2, b_2, x_3, \dots, y_N)$,

and
$$
\int [\hat{\sigma}(a_1)\hat{\sigma}(b_1) - \hat{\sigma}(a_2)\hat{\sigma}(b_2)]\hat{\sigma}(x_3) \cdots \hat{\sigma}(x_N)\Phi(d\sigma) \equiv 0.
$$

The uniqueness mentioned above shows that

(6) $\hat{\sigma}(a_1)\hat{\sigma}(b_1) = \hat{\sigma}(a_2)\hat{\sigma}(b_2)$ almost everywhere $d\Phi$. We claim $(5) \Rightarrow (6)$, for *all* instances of (5),

almost everywhere. For, in addition to the w^* -topology, K_0 carries a norm topology in which it is a separable metric space, and which yields the same Baire sets as the w^* -topology. But the sets described in (6) are norm-closed, so that the intersection of these sets is in fact a *countable* intersection, and the claim is justified.

It is easily seen that the only transforms $\hat{\sigma}$ obeying the implication (5) \Rightarrow (6) have the form $\hat{\sigma}(x) = \cos \kappa \pi x$, $k = 0, 1, 2, \dots$. This is exactly the form of H asserted in the lemma. Thc lemma and the main theorem are now proved.

REFERENCES

1. H. Helson, J.-P. Kahane, Y. Katznelson, and W. Rudin, *The functions which operate on Fourier transforms,* Acta Math. 102 (1959), 135-157.

2. C. S. Herz, *Fonctions opérant sur les fonctions définies-positives*, Ann. Inst. Fourier **(Grenoble) 13** (1963), 161-180.

3. E. Hewitt and L. J. Savage, *Symmetric measures on Cartesian product,* Trans. Amer. Math. Soc. 80 (1955), 470-501.

4. R. Kaufman, An example in the calculus of Fourier transforms, Bull. Amer. Math. Soc. 73 (1967), 357-359.

5. N. Th. Varopoulos, *The functions that operate on* $B_0(\Gamma)$ of a discrete group Γ , Bull. Soc. Math. de France 93 (1965), 301-321.

UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS